In the era of big data and the Internet of Things (IoT), data owners need to share a large amount of data with the intended receivers in an insecure environment, posing a trade-off issue between user privacy and data utility. The privacy utility trade-off was facilitated through a privacy funnel based on mutual information. Nevertheless, it is challenging to characterize the mutual information accurately with small sample size or unknown distribution functions. In this article, we propose a privacy funnel based on mutual information neural estimator (MINE) to optimize the privacy utility trade-off by estimating mutual information. Instead of computing mutual information in traditional way, we estimate it using an MINE, which obtains the estimated mutual information in a trained way, ensuring that the estimation results are as precise as possible. We employ estimated mutual information as a measure of privacy and utility, and then form a problem to optimize data utility by training a neural network while the estimator's privacy discourse is less than a threshold. The simulation results also demonstrated that the estimated mutual information from MINE works very well to approximate the mutual information even with a limited number of samples to quantify privacy leakage and data utility retention, as well as optimize the privacy utility trade-off.


翻译:在海量数据和物联网(IoT)时代,数据所有者需要在一个不安全的环境中与预定接收者分享大量数据,这在用户隐私和数据实用性之间造成了权衡问题。隐私公用事业交换是通过基于相互信息的隐私漏斗促进的。然而,以小样本大小或未知分布功能来准确描述相互信息具有挑战性。在本篇文章中,我们提议基于相互信息神经测量仪(MINE)的隐私漏斗,以便通过估计相互信息优化隐私效用交换。我们估计它不是用传统方式计算相互信息,而是使用MIME,它以经过培训的方式获取估计的相互信息,确保估算结果尽可能准确。我们使用估计的相互信息作为衡量隐私和实用性的尺度,然后形成一个问题,通过培训神经网络来优化数据效用,而测量员的隐私谈话还不到一个门槛。模拟结果还表明,由MIE估计的相互信息非常有效,即使以有限的样本数量来量化隐私渗漏和数据使用性保密性保持,也是最优化的。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年2月21日
Local Differential Privacy for Belief Functions
Arxiv
0+阅读 · 2022年2月17日
VIP会员
相关VIP内容
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员