This paper presents a crowd monitoring system based on the passive detection of probe requests. The system meets strict privacy requirements and is suited to monitoring events or buildings with a least a few hundreds of attendees. We present our counting process and an associated mathematical model. From this model, we derive a concentration inequality that highlights the accuracy of our crowd count estimator. Then, we describe our system. We present and discuss our sensor hardware, our computing system architecture, and an efficient implementation of our counting algorithm -- as well as its space and time complexity. We also show how our system ensures the privacy of people in the monitored area. Finally, we validate our system using nine weeks of data from a public library endowed with a camera-based counting system, which generates counts against which we compare those of our counting system. This comparison empirically quantifies the accuracy of our counting system, thereby showing it to be suitable for monitoring public areas. Similarly, the concentration inequality provides a theoretical validation of the system.
翻译:本文展示了基于被动检测探测探测请求的人群监测系统。 该系统符合严格的隐私要求, 适合监控事件或建筑物, 至少有几百人参加。 我们展示了我们的计数过程和相关的数学模型。 我们从这个模型中得出了一个集中不平等, 突显了我们人群计数估计器的准确性。 然后, 我们描述了我们的系统。 我们展示并讨论我们的传感器硬件、 我们的计算系统架构, 以及我们计算算法的高效实施, 以及它的空间和时间复杂性。 我们还展示了我们的系统如何确保被监控地区的人们的隐私。 最后, 我们用一个公共图书馆提供的9周数据验证了我们的系统, 这些数据具有基于相机的计数系统, 生成了我们比较我们的计数系统的计数。 这种比较用经验来量化我们的计数系统的准确性, 从而显示它是否适合监测公共区域。 同样, 集中不平等为系统提供了理论上的验证。