The widely used 'Counterfactual' definition of Causal Effects was derived for unbiasedness and accuracy - and not generalizability. We propose a simple definition for the External Validity (EV) of Interventions, Counterfactual statements and Samples. We use the definition to discuss several issues that have baffled the counterfactual approach to effect estimation: out-of-sample validity, reliance on independence assumptions or estimation, concurrent estimation of many effects and full-models, bias-variance tradeoffs, statistical power, omitted variables, and connections to supervised and explaining techniques. Methodologically, the definition also allow us to replace the parametric and generally ill-posed estimation problems that followed the counterfactual definition by combinatorial enumeration problems on non-experimental samples. We use over 20 contemporary methods and simulations to demonstrate that the approach leads to accuracy gains in standard out-of-sample prediction, intervention effect prediction and causal effect estimation tasks. The COVID19 pandemic highlighted the need for learning solutions to provide general predictions in small samples - many times with missing variables. We also demonstrate applications in this pressing problem.
翻译:广泛使用的“事实”对因果关系的定义是用于公正性和准确性,而不是一般性的。我们建议了干预、反事实陈述和抽样的外部有效性(EV)的简单定义。我们使用该定义来讨论一些混淆了反事实估计方法的问题:超模有效性、依赖独立假设或估计、同时估计许多影响和全模、偏差取舍、统计力量、省略变量以及与受监督和解释的技术的连接。从方法上看,该定义还使我们能够用组合式查点非实验样品的问题来取代在反事实定义之后出现的参数性和普遍错误的估计问题。我们使用20多个当代方法和模拟来证明,该方法在标准的除虫预测、干预效应预测和因果关系估计任务方面,取得了准确的收益。COVID19大流行强调需要学习各种解决办法,以小样品提供一般预测,许多情况下缺少变量。我们还演示了在这种紧迫问题上的应用。