Previous versions of sparse principal component analysis (PCA) have presumed that the eigen-basis (a $p \times k$ matrix) is approximately sparse. We propose a method that presumes the $p \times k$ matrix becomes approximately sparse after a $k \times k$ rotation. The simplest version of the algorithm initializes with the leading $k$ principal components. Then, the principal components are rotated with an $k \times k$ orthogonal rotation to make them approximately sparse. Finally, soft-thresholding is applied to the rotated principal components. This approach differs from prior approaches because it uses an orthogonal rotation to approximate a sparse basis. One consequence is that a sparse component need not to be a leading eigenvector, but rather a mixture of them. In this way, we propose a new (rotated) basis for sparse PCA. In addition, our approach avoids "deflation" and multiple tuning parameters required for that. Our sparse PCA framework is versatile; for example, it extends naturally to a two-way analysis of a data matrix for simultaneous dimensionality reduction of rows and columns. We provide evidence showing that for the same level of sparsity, the proposed sparse PCA method is more stable and can explain more variance compared to alternative methods. Through three applications -- sparse coding of images, analysis of transcriptome sequencing data, and large-scale clustering of social networks, we demonstrate the modern usefulness of sparse PCA in exploring multivariate data.


翻译:原始元件分析( PCA) 以前版本的原始元件分析( PCA ) 的旋转假设 eigen- basis ( $p $\ times k$ 矩阵) 大约是很少的 。 我们提出一种方法, 假设美元= time k$ 旋转后, 美元= time k$ k$ 旋转后, 基质分析( PCA) 基质分析( PCA ) 将原始元件的原始版本旋转。 然后, 主要元件会以美元\ time k$ k$ orthogon 旋转后, 假设 egen- pal- production 和 mission roadal roduction 工具的软盘化方法。 一种稀释组件的稀释方法可以避免“ 衰减” 和 多调值参数 。 我们稀释的 CPA 框架是多功能化的, 例如, 它会自然扩展到先前的方法, 因为它使用正统旋转的网络旋转旋转, 接近于稀释的旋转旋转旋转 基旋转 基质旋转 基 基 基 基图 基数 基数 。 一个比 数据 解 数据 解 解, 我们为 的 解 解 的 的 的 的 解算 的 的 的 的 的 的 的 的 基数 基数 解 的 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 度 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
专知会员服务
76+阅读 · 2021年3月16日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
104+阅读 · 2021年3月1日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
923页ppt!经典课《机器学习核方法》,附视频
专知会员服务
104+阅读 · 2021年3月1日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员