The $H^m$-conforming virtual elements of any degree $k$ on any shape of polytope in $\mathbb R^n$ with $m, n\geq1$ and $k\geq m$ are recursively constructed by gluing conforming virtual elements on faces in a universal way. For the lowest degree case $k=m$, the set of degrees of freedom only involves function values and derivatives up to order $m-1$ at the vertices of the polytope. The inverse inequality and several norm equivalences for the $H^m$-conforming virtual elements are rigorously proved. The $H^m$-conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. With the help of the interpolation error estimate and norm equivalences, the optimal error estimates are derived for the $H^m$-conforming virtual element method.


翻译:以美元、 n\ geq1美元 和 $k\ geqm美元 的方式,通过在面部上以通用方式粘贴符合虚拟元素的方式,反复构造以美元、 美元、 美元、 美元、 美元、 美元和 美元为单位的多面形形形形形形形形形体的折合虚拟元件。 对于最低度的立体体数 $k=m美元, 一套自由度仅涉及功能值和衍生物, 最高可在聚点的左端点订购 m-1 美元。 严格证明美元和 美元对齐的虚拟元件的反不平等和若干规范等值。 然后, 以美元为单位的虚拟元, 折合数的虚拟元件元件元件被应用到一个更低顺序的离散式多调调方形形形形形形形形形形形形形形形形形形形形。 在内误差估计和规范等值的帮助下, 最理想的误差估计数是用于 $-m 的虚拟成形形形形形形形形形形形形形的虚拟元方法。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员