In this paper, we consider the graph alignment problem, which is the problem of recovering, given two graphs, a one-to-one mapping between nodes that maximizes edge overlap. This problem can be viewed as a noisy version of the well-known graph isomorphism problem and appears in many applications, including social network deanonymization and cellular biology. Our focus here is on partial recovery, i.e., we look for a one-to-one mapping which is correct on a fraction of the nodes of the graph rather than on all of them, and we assume that the two input graphs to the problem are correlated Erd\H{o}s-R\'enyi graphs of parameters $(n,q,s)$. Our main contribution is then to give necessary and sufficient conditions on $(n,q,s)$ under which partial recovery is possible with high probability as the number of nodes $n$ goes to infinity. In particular, we show that it is possible to achieve partial recovery in the $nqs=\Theta(1)$ regime under certain additional assumptions. An interesting byproduct of the analysis techniques we develop to obtain the sufficiency result in the partial recovery setting is a tighter analysis of the maximum likelihood estimator for the graph alignment problem, which leads to improved sufficient conditions for exact recovery.


翻译:在本文中, 我们考虑图形对齐问题, 即用两个图形来恢复, 也就是在节点之间进行一对一的映射, 使边缘重叠最大化。 这个问题可以被看成是众所周知的图形地貌化问题的响亮版本, 并出现在许多应用中, 包括社交网络去匿名化和细胞生物学。 我们这里的焦点是部分恢复, 也就是说, 我们寻找一个一对一的映射, 在图表节点的一小部分上是正确的, 而不是在所有节点上是正确的。 我们假设, 问题的两个输入图是相关的 Erd\ H{ o}s- R\'enyi 参数图 $ (n, q, s) 。 我们的主要贡献是给$ (n, q, s) 美元 提供必要和充分的条件。 我们的主要贡献是, 在部分恢复中, 极有可能找到一个一一对一的一对一的映射图, 也就是说, 我们有可能在某些额外假设下, 在美元制度下, 实现部分恢复部分恢复, 的输入两个输入的图表图, 参数的图表图的图表图图的图, 最有可能得到更精确的分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
最新图学习推荐系统综述 | Graph Learning Approaches to Recommender Systems
机器学习与推荐算法
5+阅读 · 2020年4月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员