Classification and identification of amino acids in aqueous solutions is important in the study of biomacromolecules. Laser Induced Breakdown Spectroscopy (LIBS) uses high energy laser-pulses for ablation of chemical compounds whose radiated spectra are captured and recorded to reveal molecular structure. Spectral peaks and noise from LIBS are impacted by experimental protocols. Current methods for LIBS spectral analysis achieves promising results using PCA, a linear method. It is well-known that the underlying physical processes behind LIBS are highly nonlinear. Our work set out to understand the impact of LIBS spectra on suitable neighborhood size over which to consider pattern phenomena, if nonlinear methods capture pattern phenomena with increased efficacy, and how they improve classification and identification of compounds. We analyzed four amino acids, polysaccharide, and a control group, water. We developed an information theoretic method for measurement of LIBS energy spectra, implemented manifold methods for nonlinear dimensionality reduction, and found while clustering results were not statistically significantly different, nonlinear methods lead to increased classification accuracy. Moreover, our approach uncovered the contribution of micro-wells (experimental protocol) in LIBS spectra. To the best of our knowledge, ours is the first application of Manifold methods to LIBS amino-acid analysis in the research literature.


翻译:在水溶溶液中氨酸的分类和鉴定对于研究生物微生物蛋白质十分重要。激光诱导分解光谱仪(LIBS)使用高能量激光脉冲来消化其辐射光谱被捕获并记录以显示分子结构的化学化合物。LIBS的光谱峰和噪音受到实验协议的影响。LIBS光谱分析目前采用的方法是使用PAC(线性方法)取得有希望的结果。众所周知,LIBS背后的物理过程是高度非线性。我们的工作旨在了解LIBS光谱谱仪对适当的邻里大小的影响,以便考虑模式现象,如果非线性方法捕捉到具有更高功效的形态现象,如何改进化合物的分类和识别。我们分析了四种氨酸、聚石图以及一个控制组,水。我们开发了一个测量LIBS能量光谱谱的信息神学方法,采用了非线性维度减少的多元方法,并且发现在将结果分组时,在统计上没有显著的差异,非线性光谱谱上,我们研究的模型研究方法将增进了对LIBS的精确性研究。此外,我们关于LIBS的模型的最佳方法是对LI的精确性研究中的最佳方法。

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
已删除
将门创投
10+阅读 · 2018年5月2日
Arxiv
0+阅读 · 2021年7月15日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关资讯
已删除
将门创投
10+阅读 · 2018年5月2日
Top
微信扫码咨询专知VIP会员