We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and facet size distribution, respectively. While the $s$-uniform variant of the problem is $\mathsf{NP}$-complete when $s \geq 3$, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [Young $\textit{et al.}$, Phys. Rev. E $\textbf{96}$, 032312 (2017)], we facilitate efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures.
翻译:我们分别研究具有一个给定整数序列的简化综合体的可变性,代表节点分布和面体大小分布。虽然问题的美元统一变体是美元=mathsf{NP}-当美元=3美元时完成的,但我们发现两种输入序列的组合,其中多数可以使用我们所贡献的循环算法在多元时间内解决。我们的工作与一个简化配置模型[Young $\textit{et al.}$,Phys. Rev. E$\textb{96}, 032312 (2017)]的取样者相结合,我们为任意程度和体积分布的简化组合的高效取样提供了便利。我们发现,与基于dyadic 网络的预期相反,增加节点程度会减少简化综合体的循环次数。我们的工作揭示了对程度序列的根本限制,并根据对基于当地结构的更高秩序现象的进一步分析发出光。