We consider the problem of counting $k$-cliques in $s$-uniform Erdos-Renyi hypergraphs $G(n,c,s)$ with edge density $c$, and show that its fine-grained average-case complexity can be based on its worst-case complexity. We prove the following: 1. Dense Erdos-Renyi graphs and hypergraphs: Counting $k$-cliques on $G(n,c,s)$ with $k$ and $c$ constant matches its worst-case time complexity up to a $\mathrm{polylog}(n)$ factor. Assuming randomized ETH, it takes $n^{\Omega(k)}$ time to count $k$-cliques in $G(n,c,s)$ if $k$ and $c$ are constant. 2. Sparse Erdos-Renyi graphs and hypergraphs: When $c = \Theta(n^{-\alpha})$, we give several algorithms exploiting the sparsity of $G(n, c, s)$ that are faster than the best known worst-case algorithms. Complementing this, based on a fine-grained worst-case assumption, our results imply a different average-case phase diagram for each fixed $\alpha$ depicting a tradeoff between a runtime lower bound and $k$. Surprisingly, in the hypergraph case ($s \ge 3$), these lower bounds are tight against our algorithms exactly when $c$ is above the Erd\H{o}s-R\'{e}nyi $k$-clique percolation threshold. This is the first worst-case-to-average-case hardness reduction for a problem on Erd\H{o}s-R\'{e}nyi hypergraphs that we are aware of. We also give a variant of our result for computing the parity of the $k$-clique count that tolerates higher error probability.


翻译:我们考虑的是以美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=瑞郎=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年9月23日
专知会员服务
76+阅读 · 2021年3月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月23日
Arxiv
0+阅读 · 2021年9月23日
VIP会员
相关VIP内容
相关资讯
Nature 一周论文导读 | 2019 年 8 月 1 日
科研圈
8+阅读 · 2019年8月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员