We study the problem of deciding reconfigurability of target sets of a graph. Given a graph $G$ with vertex thresholds $\tau$, consider a dynamic process in which vertex $v$ becomes activated once at least $\tau(v)$ of its neighbors are activated. A vertex set $S$ is called a target set if all vertices of $G$ would be activated when initially activating vertices of $S$. In the Target Set Reconfiguration problem, given two target sets $X$ and $Y$ of the same size, we are required to determine whether $X$ can be transformed into $Y$ by repeatedly swapping one vertex in the current set with another vertex not in the current set preserving every intermediate set as a target set. In this paper, we investigate the complexity of Target Set Reconfiguration in restricted cases. On the hardness side, we prove that Target Set Reconfiguration is PSPACE-complete on bipartite planar graphs of degree $3$ or $4$ and of threshold $2$, bipartite $3$-regular graphs of threshold $1$ or $2$, and split graphs, which is in contrast to the fact that a special case called Vertex Cover Reconfiguration is in P for the last graph class. On the positive side, we present a polynomial-time algorithm for Target Set Reconfiguration on graphs of maximum degree $2$ and trees. The latter result can be thought of as a generalization of that for Vertex Cover Reconfiguration.


翻译:我们研究如何决定某一图表中目标集的可重新配置问题。 在目标组的重新配置问题中, 如果有两个目标组的美元和相同大小的美元, 我们就需要确定一个动态过程, 通过反复交换当前组合中的一个顶点和另一个非当前组合中的顶点来将每个中间部分保留为设定的目标, 顶点组的美元将被称为一个目标组。 在本文中, 如果在初始启动美元垂直值时所有顶点都会激活美元。 在目标组的重新配置问题中, 如果有两个目标组的美元和相同大小的美元, 我们就需要确定 $X$ 是否可以通过反复交换当前组合中的一个顶点来转换为$Y$。 在本文中, 顶点设置 $ 的顶点是所有目标组重新配置的复杂程度。 在硬度方面, 我们证明 目标组的重新配置是三美元或四美元的双面平方平方平面平面平面平面图图中, 两平面平面平面的平面平面图中, 两平面平面的平面的平面图中, 平面平面平面的平面的平面平面的平面的平面的平面的平面的平面的平面, 平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面, 平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月17日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
TensorFlow 2.0 Datasets 数据集载入
TensorFlow
6+阅读 · 2020年1月31日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
Top
微信扫码咨询专知VIP会员