In environmental health research there is often interest in the effect of an exposure on a health outcome assessed on the same day and several subsequent days or lags. Distributed lag nonlinear models (DLNM) are a well-established statistical framework for estimating an exposure-lag-response function. We propose methods to allow for prior information to be incorporated into DLNMs. First, we impose a monotonicity constraint in the exposure-response at lagged time periods which matches with knowledge on how biological mechanisms respond to increased levels of exposures. Second, we introduce variable selection into the DLNM to identify lagged periods of susceptibility with respect to the outcome of interest. The variable selection approach allows for direct application of informative priors on which lags have nonzero association with the outcome. We propose a tree-of-trees model that uses two layers of trees: one for splitting the exposure time frame and one for fitting exposure-response functions over different time periods. We introduce a zero-inflated alternative to the tree splitting prior in Bayesian additive regression trees to allow for lag selection and the addition of informative priors. We develop a computational approach for efficient posterior sampling and perform a comprehensive simulation study to compare our method to existing DLNM approaches. We apply our method to estimate time-lagged extreme temperature relationships with mortality during summer or winter in Chicago, IL.
翻译:在环境健康研究中,人们往往对接触对同一天和其后数天或时滞评估的健康结果的影响感兴趣。分布式滞后非线性模型(DLNM)是评估接触拉低反应功能的完善的统计框架。我们提出将事先信息纳入DLNM功能的方法。首先,我们对时间滞后的接触反应施加单一的制约,这与生物机制如何应对暴露水平增加的知识相符。第二,我们在DLNM中引入了变数选择,以识别在兴趣结果方面易感性的滞后时期。变量选择方法允许直接应用信息前期信息,而滞后与结果不零相关。我们建议了一种树型模型,使用两层树木:一个用于分散接触时间框架,一个用于在不同时间段里适应接触反应功能。我们引入了一种零膨胀的替代方法,取代了Bayesian 树前分解的树,以便选择滞后,并添加了信息性前期。我们用的时间选择了一种计算方法,我们用一种计算方法来进行高效的红树底取样,我们用一种计算方法,在冬季进行模拟期间,我们采用一种计算方法。我们现有的统计方法。我们采用一种计算方法,以模拟方式来进行统计室温度温度比。