This paper addresses the problem of 3D human body shape and pose estimation from RGB images. Some recent approaches to this task predict probability distributions over human body model parameters conditioned on the input images. This is motivated by the ill-posed nature of the problem wherein multiple 3D reconstructions may match the image evidence, particularly when some parts of the body are locally occluded. However, body shape parameters in widely-used body models (e.g. SMPL) control global deformations over the whole body surface. Distributions over these global shape parameters are unable to meaningfully capture uncertainty in shape estimates associated with locally-occluded body parts. In contrast, we present a method that (i) predicts distributions over local body shape in the form of semantic body measurements and (ii) uses a linear mapping to transform a local distribution over body measurements to a global distribution over SMPL shape parameters. We show that our method outperforms the current state-of-the-art in terms of identity-dependent body shape estimation accuracy on the SSP-3D dataset, and a private dataset of tape-measured humans, by probabilistically-combining local body measurement distributions predicted from multiple images of a subject.


翻译:本文处理 3D 人体形状的问题, 并从 RGB 图像中进行估计 。 一些最近的任务预测方法 预测了 以输入图像为条件的人体模型参数的概率分布 。 这是因为问题的性质不可靠, 多重 3D 重建可能与图像证据相匹配, 特别是当身体的某些部分是局部隐蔽的。 但是, 广泛使用的人体模型( 如 SMPL) 中的身体形状参数控制着整个身体表面的全球变形。 这些全球形状参数的分布无法有意义地捕捉到与本地隐蔽身体部分有关的形状估计的不确定性 。 相反, 我们提出一种方法, (一) 以语义体测量为形式预测当地身体形状的分布, (二) 使用线性绘图将人体测量的局部分布转变为SMPL 形状参数的全球分布 。 我们显示, 我们的方法在基于身份的人体形状上, 超越了当前状态的形状, 是对 SSP-3D 3D 数据集的准确性估算, 以及 磁带测量人体的私人数据集, 以预测性分布 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年10月9日
专知会员服务
28+阅读 · 2021年8月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Measure Estimation in the Barycentric Coding Model
Arxiv
0+阅读 · 2022年1月28日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员