Multivariate time series forecasting, which analyzes historical time series to predict future trends, can effectively help decision-making. Complex relations among variables in MTS, including static, dynamic, predictable, and latent relations, have made it possible to mining more features of MTS. Modeling complex relations are not only essential in characterizing latent dependency as well as modeling temporal dependence, but also brings great challenges in the MTS forecasting task. However, existing methods mainly focus on modeling certain relations among MTS variables. In this paper, we propose a novel end-to-end deep learning model, termed Multivariate Time Series Forecasting via Heterogeneous Graph Neural Networks (MTHetGNN). To characterize complex relations among variables, a relation embedding module is designed in MTHetGNN, where each variable is regarded as a graph node, and each type of edge represents a specific static or dynamic relationship. Meanwhile, a temporal embedding module is introduced for time series features extraction, where involving convolutional neural network (CNN) filters with different perception scales. Finally, a heterogeneous graph embedding module is adopted to handle the complex structural information generated by the two modules. Three benchmark datasets from the real world are used to evaluate the proposed MTHetGNN. The comprehensive experiments show that MTHetGNN achieves state-of-the-art results in the MTS forecasting task.


翻译:分析历史时间序列以预测未来趋势的多变时间序列预测可以有效地帮助决策。多边贸易体系变量之间的复杂关系,包括静态、动态、可预测和潜在关系,使得能够挖掘更多多边贸易体系的特征。建模复杂关系不仅对描述潜在依赖性和模拟时间依赖性至关重要,而且对多边贸易体系预测任务也带来了巨大挑战。然而,现有方法主要侧重于模拟多边贸易体系变量之间的某些关系。在本文件中,我们提议了一个新型的端到端深学习模型,称为多变时间序列,通过异质图形神经网络预报(MTHETGNN)。为了描述变量之间的复杂关系,在 MTHEetGNNN 中设计了一个关系嵌入模块,每个变量都被视为图形节点,而每种边缘代表了特定的静态或动态关系。同时,为时间序列提取引入了一个时间嵌入模块,其中涉及具有不同认知尺度的进化神经网络过滤器。最后,采用了一个混相图形嵌入模块,用于处理由两个模型生成的复杂结构信息。MNFTHTF 使用的数据基准显示从两个模块中实现的复杂结构结果。

0
下载
关闭预览

相关内容

【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
134+阅读 · 2020年2月13日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
56+阅读 · 2020年2月10日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
6+阅读 · 2019年9月25日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员