Natural Language Processing (NLP) is one of the core techniques in AI software. As AI is being applied to more and more domains, how to efficiently develop high-quality domain-specific language models becomes a critical question in AI software engineering. Existing domain-specific language model development processes mostly focus on learning a domain-specific pre-trained language model (PLM); when training the domain task-specific language model based on PLM, only a direct (and often unsatisfactory) fine-tuning strategy is adopted commonly. By enhancing the task-specific training procedure with domain knowledge graphs, we propose KnowledgeDA, a unified and low-code domain language model development service. Given domain-specific task texts input by a user, KnowledgeDA can automatically generate a domain-specific language model following three steps: (i) localize domain knowledge entities in texts via an embedding-similarity approach; (ii) generate augmented samples by retrieving replaceable domain entity pairs from two views of both knowledge graph and training data; (iii) select high-quality augmented samples for fine-tuning via confidence-based assessment. We implement a prototype of KnowledgeDA to learn language models for two domains, healthcare and software development. Experiments on five domain-specific NLP tasks verify the effectiveness and generalizability of KnowledgeDA. (Code is publicly available at https://github.com/RuiqingDing/KnowledgeDA.)


翻译:自然语言处理(NLP)是AI软件的核心技术之一。随着AI应用到越来越多的领域,如何有效开发高质量的特定域语言模型成为AI软件工程中的一个关键问题。现有的特定域语言模式开发过程主要侧重于学习一个特定域的预先培训语言模型(PLM);在培训基于PLM的具体域任务语言模型时,通常只采用直接(而且往往不能令人满意)的微调战略。通过用域知识图表加强具体任务培训程序,我们建议“知识开发工具”,一个统一和低编码的域域语言模型开发服务。鉴于用户对域特定任务文本的投入,“知识开发工具”可自动产生一个特定域语言模型,遵循三个步骤:(一) 通过嵌入式-类似方法,将文本中的域知识实体本地化;(二) 从知识图表和培训数据两种观点中重新定位可替换的域实体配对,产生更多的样本;(三) 选择高质量的强化样本,通过基于信任的评估进行微调。我们实施了知识开发数据数据库原型,以学习两个域的域、ROD/软件开发。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员