Hierarchical matrices provide a powerful representation for significantly reducing the computational complexity associated with dense kernel matrices. For general kernel functions, interpolation-based methods are widely used for the efficient construction of hierarchical matrices. In this paper, we present a fast hierarchical data reduction (HiDR) procedure with $O(n)$ complexity for the memory-efficient construction of hierarchical matrices with nested bases where $n$ is the number of data points. HiDR aims to reduce the given data in a hierarchical way so as to obtain $O(1)$ representations for all nearfield and farfield interactions. Based on HiDR, a linear complexity $\mathcal{H}^2$ matrix construction algorithm is proposed. The use of data-driven methods enables {better efficiency than other general-purpose methods} and flexible computation without accessing the kernel function. Experiments demonstrate significantly improved memory efficiency of the proposed data-driven method compared to interpolation-based methods over a wide range of kernels. Though the method is not optimized for any special kernel, benchmark experiments for the Coulomb kernel show that the proposed general-purpose algorithm offers competitive performance for hierarchical matrix construction compared to several state-of-the-art algorithms for the Coulomb kernel.
翻译:梯度矩阵为大幅降低与密集内核矩阵相关的计算复杂性提供了强大的代表。 对于普通内核功能,广泛使用基于内核的内核方法来高效构建等级矩阵。在本文中,我们提出了一个快速的等级数据减少程序(HIDR),其中以O(n)美元为复杂性,用于在数据点数为零的嵌入基地构建高层次矩阵。HIDR旨在以等级方式减少给定数据,以便获得用于所有近场和远地互动的O(1)美元代表。根据HIDR, 提议采用线性复杂 $\mathcal{H ⁇ 2$矩阵构建算法。使用数据驱动方法可以使{比其他通用方法更高效 } 和灵活计算而不使用内核功能。实验表明,与广泛的内核内核内核的内核内核内核内核内核内核内核内核的内存法相比,拟议的数据驱动方法的记忆效率大大提高。虽然该方法没有优化任何特殊内核内核的表示。根据HIDR的基线实验,提议,用于CO内核内核内核的比较数级的通用矩阵的通用内核算法具有竞争性。