Active subspace analysis uses the leading eigenspace of the gradient's second moment to conduct supervised dimension reduction. In this article, we extend this methodology to real-valued functionals on Hilbert space. We define an operator which coincides with the active subspace matrix when applied to a Euclidean space. We show that many of the desirable properties of Active Subspace analysis extend directly to the infinite dimensional setting. We also propose a Monte Carlo procedure and discuss its convergence properties. Finally, we deploy this methodology to create visualizations and improve modeling and optimization on complex test problems.
翻译:暂无翻译