We study a class of graphs that represent local independence structures in stochastic processes allowing for correlated error processes. Several graphs may encode the same local independencies and we characterize such equivalence classes of graphs. In the worst case, the number of conditions in our characterizations grows superpolynomially as a function of the size of the node set in the graph. We show that deciding Markov equivalence is coNP-complete which suggests that our characterizations cannot be improved upon substantially. We prove a global Markov property in the case of a multivariate Ornstein-Uhlenbeck process which is driven by correlated Brownian motions.


翻译:我们研究一组图表,这些图表代表了本地独立结构的随机过程,允许相关的错误过程。几个图表可能编码相同的本地不依赖性,我们将这种等同的图表类别定性为。最坏的情况是,我们定性中的条件数量随着图中设定的节点大小的函数而超极化增长。我们表明,确定Markov等值是共同NP的完成,这表明我们的定性无法大大改进。在由相关布朗运动驱动的多变Ornstein-Uhlenbeck进程的情况下,我们证明了全球的Markov属性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2020年10月29日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员