By bringing computing capacity from a remote cloud environment closer to the user, fog computing is introduced. As a result, users can access the services from more nearby computing environments, resulting in better quality of service and lower latency on the network. From the service providers' point of view, this addresses the network latency and congestion issues. This is achieved by deploying the services in cloud and fog computing environments. The responsibility of service providers is to manage the heterogeneous resources available in both computing environments. In recent years, resource management strategies have made it possible to efficiently allocate resources from nearby fog and clouds to users' applications. Unfortunately, these existing resource management strategies fail to give the desired result when the service providers have the opportunity to allocate the resources to the users' application from fog nodes that are at a multi-hop distance from the nearby fog node. The complexity of this resource management problem drastically increases in a MultiFog-Cloud environment. This problem motivates us to revisit and present a novel Heuristic Resource Allocation and Optimization algorithm in a MultiFog-Cloud (HeRAFC) environment. Taking users' application priority, execution time, and communication latency into account, HeRAFC optimizes resource utilization and minimizes cloud load. The proposed algorithm is evaluated and compared with related algorithms. The simulation results show the efficiency of the proposed HeRAFC over other algorithms.
翻译:通过将远程云环境的计算能力带到用户更近的地方,引入了雾计算。因此,用户可以从更近的计算环境访问服务,从而在网络上提供更好的服务质量和更低的延迟。从服务提供商的角度来看,这解决了网络延迟和拥塞问题。这通过在云和雾计算环境中部署服务来实现。服务提供商的责任是管理两个计算环境中可用的异构资源。近年来,资源管理策略使得能够有效地分配来自附近雾和云的资源给用户的应用程序。不幸的是,当服务提供商有机会从距离附近雾节点的多跳距离的雾节点中向用户的应用程序分配资源时,这些现有的资源管理策略无法给出所需的结果。这个资源管理问题在多层雾端-云端环境下的复杂性急剧增加。这个问题激励我们重新审视并提出一种多层雾端-云端中的启发式资源分配和优化算法(HeRAFC)。在考虑到用户应用程序优先级、执行时间和通信延迟的情况下,HeRAFC优化资源利用并最小化云负载。所提出的算法经过评估和与相关算法进行比较。仿真结果展示了所提出的HeRAFC算法相对于其他算法的效率。