In response to the COVID-19 pandemic, traditional physical classrooms have transitioned to online environments, necessitating effective strategies to ensure sustained student engagement. A significant challenge in online teaching is the absence of real-time feedback from teachers on students learning progress. This paper introduces a novel approach employing deep learning techniques based on facial expressions to assess students engagement levels during online learning sessions. Human emotions cannot be adequately conveyed by a student using only the basic emotions, including anger, disgust, fear, joy, sadness, surprise, and neutrality. To address this challenge, proposed a generation of four complex emotions such as confusion, satisfaction, disappointment, and frustration by combining the basic emotions. These complex emotions are often experienced simultaneously by students during the learning session. To depict these emotions dynamically,utilized a continuous stream of image frames instead of discrete images. The proposed work utilized a Convolutional Neural Network (CNN) model to categorize the fundamental emotional states of learners accurately. The proposed CNN model demonstrates strong performance, achieving a 95% accuracy in precise categorization of learner emotions.
翻译:暂无翻译