Despite the successes of deep neural networks on many challenging vision tasks, they often fail to generalize to new test domains that are not distributed identically to the training data. The domain adaptation becomes more challenging for cross-modality medical data with a notable domain shift. Given that specific annotated imaging modalities may not be accessible nor complete. Our proposed solution is based on the cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists and bridge the domain gap in radiological images. We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups. Built upon adversarial training, we propose a learnable self-attentive spatial normalization of the deep convolutional generator network's intermediate activations. Unlike previous attention-based image-to-image translation approaches, which are either domain-specific or require distortion of the source domain's structures, we unearth the importance of the auxiliary semantic information to handle the geometric changes and preserve anatomical structures during image translation. We achieve superior results for cross-modality segmentation between unpaired MRI and CT data for multi-modality whole heart and multi-modal brain tumor MRI (T1/T2) datasets compared to the state-of-the-art methods. We also observe encouraging results in cross-modality conversion for paired MRI and CT images on a brain dataset. Furthermore, a detailed analysis of the cross-modality image translation, thorough ablation studies confirm our proposed method's efficacy.
翻译:尽管在很多具有挑战性的视觉任务上,深心神经网络取得了成功,但它们往往未能推广到与培训数据不完全相同的新测试域。 域适应对于跨现代医疗数据来说更具挑战性, 并有一个显著的域变。 鉴于特定的附加说明成像模式可能无法获取或完成。 我们提出的解决方案是基于医疗图像的跨现代合成,以减少放射科医生昂贵的笔记负担,并缩小辐射图像的域间差距。 我们提出了一个新型的方法,用于医疗图像中的图像到图像图像的图像到图像图像转换,能够进行监管或非监督的图像数据转换(未配置成图像数据数据数据数据数据数据数据)的监控性空间正常化。 与以往基于关注的图像到图像转换的图像转换方法不同, 要么是针对特定域的, 要么是需要扭曲源域域结构的结构结构结构。 我们无法理解辅助性结构信息的重要性, 能够管理直截面的图像转换(未配置的图像数据数据数据数据数据数据) 在图像转换过程中, 我们为跨模版的大脑数据分析取得更高程度的结果。