Efficient PV research which includes a prolonged data monitoring from multiple experiments with different characteristics, requires a scalable supporting system to handle all of the collected information. This paper presents the development of a relational database for hosting all the necessary information for data modeling, comparative analysis and O\&M systems. Ramer-Douglas-Peucker algorithm and Timescaledb compression are used to decrease the size of the time-series data and increase the performance of the queries. A decision-making algorithm is presented for selecting the optimal inputs to the Ramer-Douglas-Peucker algorithm to ensure the maximum disk space savings while not losing any of the necessary information. Furthermore, alternative ways of implementing the same database are provided.
翻译:高效的光电池研究包括从具有不同特点的多个实验中长期监测数据,需要有一个可扩缩的支持系统来处理所收集的所有信息,本文件介绍开发一个关系数据库,以托管数据建模、比较分析和O ⁇ M系统所需的所有信息。Ramer-Douglas-Peucker算法和时间缩放压缩法被用来缩小时间序列数据的规模,提高查询的性能。还提出了一个决策算法,用于选择对Ramer-Douglas-Perucker算法的最佳输入,以确保最大限度地节省磁盘空间,同时不丢失任何必要的信息。此外,还提供了实施同一数据库的替代方法。