Communication between robots and the server is a major problem for cloud robotic systems. In this paper, we address the problem caused by data loss during such communications, and propose an efficient buffering algorithm, called AFR, to solve the problem. We model the problem into an optimization problem to maximize the received Quantity of Information (QoI). Our AFR algorithm is formally proved to achieve near-optimal QoI, which has a lower bound that is a constant multiple of the unrealizable optimal QoI. We implement our AFR algorithm in ROS without changing the interface or API for the applications. Our experiments on two cloud robot applications show that our AFR algorithm can efficiently and effectively reduce the impact of data loss. For the remote mapping application, the RMSE caused by data loss can be reduced by about 20%. For the remote tracking application, the probability of tracking failure caused by data loss can be reduced from about 40%-60% to under 10%. Meanwhile, our AFR algorithm introduces time overhead of under 10 microseconds.
翻译:机器人和服务器之间的通信是云型机器人系统的一个主要问题。 在本文中, 我们解决了在这种通信过程中数据丢失造成的问题, 并提出了一个高效的缓冲算法, 称为 AFR, 以解决这个问题。 我们将问题模型化为优化问题, 以最大限度地增加收到的信息数量( QoI )。 我们的 AFR 算法被正式证明可以实现接近最佳的 QoI, 其下限是无法实现的最佳 QoI 的常数倍数。 我们在ROS 中执行我们的 AFR 算法, 而不改变界面或应用的 API 。 我们在两个云型机器人应用程序上的实验显示, 我们的 AFR 算法可以高效有效地减少数据损失的影响。 在远程绘图应用程序中, 数据损失造成的 RMSE 将减少约20% 。 在远程跟踪应用中, 跟踪数据损失造成的失败的可能性从40%-60% 降低到 10 % 。 同时, 我们的 AFR 算法将10 微秒以下的时间间接。