Recent language modeling performance has been greatly improved by the use of external memory. This memory encodes the context so that similar contexts can be recalled during decoding. This similarity depends on how the model learns to encode context, which can be altered to include other attributes, such as style. We construct and evaluate an architecture for this purpose, using corpora annotated for politeness, formality, and toxicity. Through extensive experiments and human evaluation we demonstrate the potential of our method to generate text while controlling style. We find that style-specific datastores improve generation performance, though results vary greatly across styles, and the effect of pretraining data and specific styles should be explored in future work.
翻译:使用外部内存大大改进了最近的语言模型性能。 这个内存编码了上下文, 以便在解码过程中可以回忆类似的背景。 这种相似性取决于模型如何学会编码上下文, 并可以修改成包含其他属性, 如样式。 我们为此建造和评估一个架构, 使用对礼貌、 礼节性和毒性的注释。 通过广泛的实验和人类评估, 我们展示了我们在控制风格的同时生成文本的方法的潜力。 我们发现, 特定样式的数据储存提高了生成性能, 尽管不同样式的结果差异很大, 并且在未来的工作中应该探索培训前的数据和特定风格的效果 。