Current intent classification approaches assign binary intent class memberships to natural language utterances while disregarding the inherent vagueness in language and the corresponding vagueness in intent class boundaries. In this work, we propose a scheme to address the ambiguity in single-intent as well as multi-intent natural language utterances by creating degree memberships over fuzzified intent classes. To our knowledge, this is the first work to address and quantify the impact of the fuzzy nature of natural language utterances over intent category memberships. Additionally, our approach overcomes the sparsity of multi-intent utterance data to train classification models by using a small database of single intent utterances to generate class memberships over multi-intent utterances. We evaluate our approach over two task-oriented dialog datasets, across different fuzzy membership generation techniques and approximate string similarity measures. Our results reveal the impact of lexical overlap between utterances of different intents, and the underlying data distributions, on the fuzzification of intent memberships. Moreover, we evaluate the accuracy of our approach by comparing the defuzzified memberships to their binary counterparts, across different combinations of membership functions and string similarity measures.
翻译:目前的意图分类方法将二进制意图类别成员分配为自然语言言论,而忽视语言的内在模糊性和意图类别界限的相应模糊性。在这项工作中,我们提出一个办法,解决单一意图和多种意图自然语言言论中的模糊性,方法是通过在模糊意图类别中建立程度成员,从而建立不同程度的归属和大致相似性衡量标准,从而解决单一意图和多种意图自然语言言论中的模糊性。据我们所知,这是处理和量化自然语言模糊性言论对意图类别成员的影响的首次工作。此外,我们的办法克服了多种意图表达数据在培训分类模式方面的模糊性,方法是利用一个单一意图言论的小型数据库,在多种意图言论中产生阶级成员。我们评估我们对两个任务导向性对话数据集的做法,即跨越不同模糊的成员生成技术和近似相似性衡量标准。我们的结果揭示了不同意图的表述和基本数据分布对意图成员构成的模糊性的影响。此外,我们评估了我们方法的准确性,方法是将分解的成员资格与类似会员国的二进制函数和类似措施的组合。