Digitization, i.e., the process of converting information into a digital format, may provide various opportunities (e.g., increase in productivity, disaster recovery, and environmentally friendly solutions) and challenges for businesses. In this context, one of the main challenges would be to accurately classify numerous scanned documents uploaded every day by customers as usual business processes. For example, processes in banking (e.g., applying for loans) or the Government Registry of BDM (Births, Deaths, and Marriages) applications may involve uploading several documents such as a driver's license and passport. There are not many studies available to address the challenge as an application of image classification. Although some studies are available which used various methods, a more accurate model is still required. The current study has proposed a robust fusion model to define the type of identity documents accurately. The proposed approach is based on two different methods in which images are classified based on their visual features and text features. A novel model based on statistics and regression has been proposed to calculate the confidence level for the feature-based classifier. A fuzzy-mean fusion model has been proposed to combine the classifier results based on their confidence score. The proposed approach has been implemented using Python and experimentally validated on synthetic and real-world datasets. The performance of the proposed model is evaluated using the Receiver Operating Characteristic (ROC) curve analysis.


翻译:数字化,即将信息转换成数字格式的过程,可能为企业提供各种机会(例如,提高生产力、灾后恢复和环保解决方案的提高)和挑战,为企业提供各种机会(例如,提高生产率、灾后恢复和环保解决方案)和挑战,在这方面,主要挑战之一是将客户每天上传的大量扫描文件作为通常的业务流程准确分类,例如,银行(例如,申请贷款)或BDM(Birth、死亡和婚姻)的政府登记处(Birth、死亡和婚姻)应用程序可能涉及上传一些文件,如驾驶执照和护照等。虽然目前没有多少研究可用于应对作为图像分类应用的挑战。虽然有些研究使用了各种方法,但仍需要一种更准确的模式。目前的研究提出了一种强有力的聚合模式,以准确界定身份证件的类型。拟议的方法有两种不同的方法,根据图像的视觉特征和文字特征特征特征(Birth、死亡和婚姻)对图像进行分类进行分类。基于统计和回归的新模式,以计算基于地貌分类和护照等的信任度。提议了一种fzzy-me-meal-cental 模型,以采用各种方法应对挑战,但仍需要一种更精确的模式。目前的模型。目前研究提议,以便根据对正变式方法对正态数据进行比较评估。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
注意力机制模型最新综述
专知会员服务
267+阅读 · 2019年10月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员