The problem of measuring sentence similarity is an essential issue in the natural language processing (NLP) area. It is necessary to measure the similarity between sentences accurately. There are many approaches to measuring sentence similarity. Deep learning methodology shows a state-of-the-art performance in many natural language processing fields and is used a lot in sentence similarity measurement methods. However, in the natural language processing field, considering the structure of the sentence or the word structure that makes up the sentence is also important. In this study, we propose a methodology combined with both deep learning methodology and a method considering lexical relationships. Our evaluation metric is the Pearson correlation coefficient and Spearman correlation coefficient. As a result, the proposed method outperforms the current approaches on a KorSTS standard benchmark Korean dataset. Moreover, it performs a maximum of 65% increase than only using deep learning methodology. Experiments show that our proposed method generally results in better performance than those with only a deep learning model.


翻译:衡量判决相似性问题是自然语言处理(NLP)领域的一个基本问题。 有必要精确地衡量判决相似性。 有很多衡量判决相似性的方法。 深层学习方法显示在许多自然语言处理领域最先进的表现,并大量使用判决相似性测量方法。 但是,在自然语言处理领域,考虑到判决的结构或构成判决的词结构也很重要。 在这项研究中,我们提出了一种方法,既结合深层学习方法,又结合一种考虑词汇关系的方法。 我们的评估指标是皮尔逊相关系数和斯皮尔曼相关系数。 结果是,拟议的方法比韩国标准韩国标准数据集目前的方法更优。 此外,该方法比仅使用深层学习方法高出65%。 实验表明,我们提出的方法通常比只有深层学习模式的方法更能产生更好的效果。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2019年10月6日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员