Probabilistic regression techniques in control and robotics applications have to fulfill different criteria of data-driven adaptability, computational efficiency, scalability to high dimensions, and the capacity to deal with different modalities in the data. Classical regressors usually fulfill only a subset of these properties. In this work, we extend seminal work on Bayesian nonparametric mixtures and derive an efficient variational Bayes inference technique for infinite mixtures of probabilistic local polynomial models with well-calibrated certainty quantification. We highlight the model's power in combining data-driven complexity adaptation, fast prediction and the ability to deal with discontinuous functions and heteroscedastic noise. We benchmark this technique on a range of large real inverse dynamics datasets, showing that the infinite mixture formulation is competitive with classical Local Learning methods and regularizes model complexity by adapting the number of components based on data and without relying on heuristics. Moreover, to showcase the practicality of the approach, we use the learned models for online inverse dynamics control of a Barrett-WAM manipulator, significantly improving the trajectory tracking performance.
翻译:在控制和机器人应用中,概率回归技术必须满足数据驱动适应性、计算效率、可伸缩到高维的不同标准,以及处理数据中不同模式的能力等不同标准。古老回归者通常只满足其中一部分特性。在这项工作中,我们扩展了巴伊西亚非参数混合物的原始工作,并产生了一种高效的变式贝雅推导技术,用于富含充分校准确定性量化的本地概率多元模型的无限混合物。我们强调模型在将数据驱动的复杂适应性、快速预测和处理不连续功能和超振动噪音的能力结合起来方面的力量。我们把这一技术以一系列大真实反动动态数据集为基准,表明无限的混合物配方与传统的当地学习方法具有竞争力,并通过调整基于数据且不依赖超自然学的组件数量来规范模型复杂性。此外,为了展示这种方法的实用性,我们使用学习模型对巴雷特-WAM操纵器进行在线反动态控制,极大地改进轨迹跟踪性。