Dialogue state tracking (DST) is a pivotal component in task-oriented dialogue systems. While it is relatively easy for a DST model to capture belief states in short conversations, the task of DST becomes more challenging as the length of a dialogue increases due to the injection of more distracting contexts. In this paper, we aim to improve the overall performance of DST with a special focus on handling longer dialogues. We tackle this problem from three perspectives: 1) A model designed to enable hierarchical slot status prediction; 2) Balanced training procedure for generic and task-specific language understanding; 3) Data perturbation which enhances the model's ability in handling longer conversations. We conduct experiments on the MultiWOZ benchmark, and demonstrate the effectiveness of each component via a set of ablation tests, especially on longer conversations.
翻译:对话状态跟踪(DST)是任务导向对话系统的关键组成部分。 DST模式相对容易在短短的交谈中捕捉到信仰状态,但DST的任务随着对话时间的延长而变得更为艰巨。 在本文中,我们的目标是改善DST的总体表现,特别侧重于处理更长的对话。我们从三个角度来解决这个问题:(1) 一种旨在促成等级档状态预测的模式;(2) 用于通用语言和任务特定语言理解的平衡培训程序;(3) 数据干扰,这加强了模式处理较长对话的能力。 我们用多功能区基准进行实验,并通过一系列通缩测试,特别是在较长的交谈上,展示每个组成部分的有效性。