Performance of neural models for named entity recognition degrades over time, becoming stale. This degradation is due to temporal drift, the change in our target variables' statistical properties over time. This issue is especially problematic for social media data, where topics change rapidly. In order to mitigate the problem, data annotation and retraining of models is common. Despite its usefulness, this process is expensive and time-consuming, which motivates new research on efficient model updating. In this paper, we propose an intuitive approach to measure the potential trendiness of tweets and use this metric to select the most informative instances to use for training. We conduct experiments on three state-of-the-art models on the Temporal Twitter Dataset. Our approach shows larger increases in prediction accuracy with less training data than the alternatives, making it an attractive, practical solution.
翻译:被称为实体识别的神经模型的性能随着时间的流逝而下降,变得陈旧。这种退化是由于时间的流逝,我们的目标变量的统计特性随时间的变化而变化。对于社交媒体数据来说,这个问题特别成问题,因为主题迅速变化。为了缓解问题,数据注释和模型再培训是常见的。尽管这个过程很有用,但它费用昂贵而且耗时,促使对有效的模型更新进行新的研究。在本文中,我们提出一种直觉的方法来测量推文的潜在趋势,并使用这个指标来选择用于培训的最有信息的例子。我们在Twitter数据集上对三种最先进的模型进行实验。我们的方法显示,用培训数据比替代数据少的预测准确性要大,因此它是一种吸引人、实用的解决办法。