This paper aims at providing a new semi-parametric estimator for LARCH($\infty$) processes, and therefore also for LARCH(p) or GLARCH(p, q) processes. This estimator is obtained from the minimization of a contrast leading to a least squares estimator of the absolute values of the process. The strong consistency and the asymptotic normality are showed, and the convergence happens with rate $\sqrt$ n as well in cases of short or long memory. Numerical experiments confirm the theoretical results, and show that this new estimator clearly outperforms the smoothed quasi-maximum likelihood estimators or the weighted least square estimators often used for such processes.
翻译:本文旨在为LARCH($\ infty$)进程以及因此也为LARCH(p) 或GLARCH(p, q) 进程提供一个新的半参数估计值。 此估计值来自最小化的对比, 导致该过程绝对值的最小正方位估计值。 显示强烈的连贯性和无症状的正常性, 趋同于$\ sqrt$ n 以及短或长的记忆。 数字实验证实了理论结果, 并显示这个新的估计值明显超过光滑的准最大概率估计值或经常用于该过程的加权最低正方位估计值。