We introduce deep learning models to estimate the masses of the binary components of black hole mergers, $(m_1,m_2)$, and three astrophysical properties of the post-merger compact remnant, namely, the final spin, $a_f$, and the frequency and damping time of the ringdown oscillations of the fundamental $\ell=m=2$ bar mode, $(\omega_R, \omega_I)$. Our neural networks combine a modified $\texttt{WaveNet}$ architecture with contrastive learning and normalizing flow. We validate these models against a Gaussian conjugate prior family whose posterior distribution is described by a closed analytical expression. Upon confirming that our models produce statistically consistent results, we used them to estimate the astrophysical parameters $(m_1,m_2, a_f, \omega_R, \omega_I)$ of five binary black holes: $\texttt{GW150914}, \texttt{GW170104}, \texttt{GW170814}, \texttt{GW190521}$ and $\texttt{GW190630}$. We use $\texttt{PyCBC Inference}$ to directly compare traditional Bayesian methodologies for parameter estimation with our deep-learning-based posterior distributions. Our results show that our neural network models predict posterior distributions that encode physical correlations, and that our data-driven median results and 90$\%$ confidence intervals are similar to those produced with gravitational wave Bayesian analyses. This methodology requires a single V100 $\texttt{NVIDIA}$ GPU to produce median values and posterior distributions within two milliseconds for each event. This neural network, and a tutorial for its use, are available at the $\texttt{Data and Learning Hub for Science}$.
翻译:我们引入深度学习模型来估计黑洞合并的二进制成分质量、 $(m_1,m_2) 美元(m_1,m_2) 和后合并压缩残余体的三个天体物理属性, 即最终旋转、 $a_ f$(f$) 和基$=m=2巴模式环形振荡的频率和间隔时间, $( omga_ R,\omga_ I) 。 我们的神经网络将修改后的 $( textt{ Wve} 美元结构与对比性学习和正常化流结合起来 。 我们根据Gaussian Conjugate 先前的家族, 其前一面值分布通过封闭的分析来描述。 在确认我们的模型产生统计上一致的结果后, 我们用它们来估计星体参数$( m_1,m2, a_f) 。 omica_ral_ral_Rioal_ral_ral_i) $( =xxxxx) max max lix lex lix lix lient_x_x_x_x_x_xxxxxxxxxx_x_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx