With the growing complexity of big data workloads that require abundant data and computation, data centers consume a tremendous amount of power daily. In an effort to minimize data center power consumption, several studies developed power models that can be used for job scheduling either reducing the number of active servers or balancing workloads across servers at their peak energy efficiency points. Due to increasing software and hardware heterogeneity, we observed that there is no single power model that works the best for all server conditions. Some complicated machine learning models themselves incur performance and power overheads and hence it is not desirable to use them frequently. There are no power models that consider containerized workload execution. In this paper, we propose a hybrid server power model, Hydra, that considers both prediction accuracy and performance overhead. Hydra dynamically chooses the best power model for the given server conditions. Compared with state-of-the-art solutions, Hydra outperforms across all compute-intensity levels on heterogeneous servers.
翻译:由于大数据工作量日益复杂,需要大量数据和计算,数据中心每天消耗大量电力。为了尽量减少数据中心的电力消耗,一些研究开发了可用于工作时间安排的动力模型,这些模型既可以减少活跃服务器的数量,也可以在服务器的能效高峰点平衡各服务器的工作量。由于软件和硬件的异质性增加,我们发现,没有一种单一的电力模型对所有服务器条件最有效。一些复杂的机器学习模型本身产生性能和电荷,因此不适宜经常使用这些模型。没有考虑到集装箱化工作量执行的动力模型。在本文件中,我们提出了一个混合服务器动力模型,即海德拉,既考虑预测准确性,又考虑性能管理。海德拉动态地选择了特定服务器条件的最佳动力模型。与最先进的解决方案相比,海德拉在混杂服务器上的所有计算强度水平上都比高。