Disparate treatment occurs when a machine learning model yields different decisions for individuals based on a sensitive attribute (e.g., age, sex). In domains where prediction accuracy is paramount, it could potentially be acceptable to fit a model which exhibits disparate treatment. To evaluate the effect of disparate treatment, we compare the performance of split classifiers (i.e., classifiers trained and deployed separately on each group) with group-blind classifiers (i.e., classifiers which do not use a sensitive attribute). We introduce the benefit-of-splitting for quantifying the performance improvement by splitting classifiers. Computing the benefit-of-splitting directly from its definition could be intractable since it involves solving optimization problems over an infinite-dimensional functional space. Under different performance measures, we (i) prove an equivalent expression for the benefit-of-splitting which can be efficiently computed by solving small-scale convex programs; (ii) provide sharp upper and lower bounds for the benefit-of-splitting which reveal precise conditions where a group-blind classifier will always suffer from a non-trivial performance gap from the split classifiers. In the finite sample regime, splitting is not necessarily beneficial and we provide data-dependent bounds to understand this effect. Finally, we validate our theoretical results through numerical experiments on both synthetic and real-world datasets.


翻译:当机器学习模式根据敏感属性(如年龄、性别)对个人作出不同决定时,就会出现不平等待遇。在预测准确性至关重要的领域,如果适合一个显示不同待遇的模型,就可能被接受。为了评估不同待遇的影响,我们将分裂分类者(即经过培训和单独部署的分类者)的绩效与群体盲分分类者(即不使用敏感属性的分类者)的绩效进行比较(即,不使用敏感属性的分类者)的绩效进行区分。我们引入了分解分类者量化业绩改进的分化好处。计算直接从分类者定义中分解的好处可能难以解决,因为它涉及在无限维度功能空间上解决优化问题。在不同的业绩计量下,我们(一)证明分分解的分类者(即分别培训和单独部署的分类者)与群体分解分类者(即不使用敏感属性的分类者)的绩效相当;(二)为分拆分分分解的分解者(即分类者提供分解分解分类者性绩效改进的精确条件,而分解的分解的好处可能难以解决的问题。在无限的功能功能功能空间空间空间空间空间空间中,我们最终理解数据不会产生有利的结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员