We study uncloneable quantum encryption schemes for classical messages as recently proposed by Broadbent and Lord. We focus on the information-theoretic setting and give several limitations on the structure and security of these schemes: Concretely, 1) We give an explicit cloning-indistinguishable attack that succeeds with probability $\frac12 + \mu/16$ where $\mu$ is related to the largest eigenvalue of the resulting quantum ciphertexts. 2) For a uniform message distribution, we partially characterize the scheme with the minimal success probability for cloning attacks. 3) Under natural symmetry conditions, we prove that the rank of the ciphertext density operators has to grow at least logarithmically in the number of messages to ensure uncloneable security. 4) The \emph{simultaneous} one-way-to-hiding (O2H) lemma is an important technique in recent works on uncloneable encryption and quantum copy protection. We give an explicit example which shatters the hope of reducing the multiplicative "security loss" constant in this lemma to below 9/8.


翻译:我们研究了Broadbent and Lord最近提出的古典信息不可分量加密方案。我们侧重于信息理论设置,并对这些方案的结构和安全作了若干限制:1具体地说,我们给出了明确的克隆不可区分的攻击,其成功概率为$\frac12 +\mu/16美元,其中$\mu$与由此产生的量子密码的最大值有关。(2)对于统一的信息分发,我们部分地将克隆攻击的成功概率降低到最低。(3)在自然对称条件下,我们证明加密密度操作员的级别必须至少对调增加电文数量以确保不可区分的安全性。(4) 单向连接(O2H) Lemma是最近关于不可分解的加密和量子复制保护工作的一个重要技术。我们给出了一个明确的例子,它打破了减少Lemma到下面的多复制性“安全性损失”的希望。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年3月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月6日
Arxiv
0+阅读 · 2022年1月5日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年3月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员