We study uncloneable quantum encryption schemes for classical messages as recently proposed by Broadbent and Lord. We focus on the information-theoretic setting and give several limitations on the structure and security of these schemes: Concretely, 1) We give an explicit cloning-indistinguishable attack that succeeds with probability $\frac12 + \mu/16$ where $\mu$ is related to the largest eigenvalue of the resulting quantum ciphertexts. 2) For a uniform message distribution, we partially characterize the scheme with the minimal success probability for cloning attacks. 3) Under natural symmetry conditions, we prove that the rank of the ciphertext density operators has to grow at least logarithmically in the number of messages to ensure uncloneable security. 4) The \emph{simultaneous} one-way-to-hiding (O2H) lemma is an important technique in recent works on uncloneable encryption and quantum copy protection. We give an explicit example which shatters the hope of reducing the multiplicative "security loss" constant in this lemma to below 9/8.
翻译:我们研究了Broadbent and Lord最近提出的古典信息不可分量加密方案。我们侧重于信息理论设置,并对这些方案的结构和安全作了若干限制:1具体地说,我们给出了明确的克隆不可区分的攻击,其成功概率为$\frac12 +\mu/16美元,其中$\mu$与由此产生的量子密码的最大值有关。(2)对于统一的信息分发,我们部分地将克隆攻击的成功概率降低到最低。(3)在自然对称条件下,我们证明加密密度操作员的级别必须至少对调增加电文数量以确保不可区分的安全性。(4) 单向连接(O2H) Lemma是最近关于不可分解的加密和量子复制保护工作的一个重要技术。我们给出了一个明确的例子,它打破了减少Lemma到下面的多复制性“安全性损失”的希望。