The similarity between objects is significant in a broad range of areas. While similarity can be measured using off-the-shelf distance functions, they may fail to capture the inherent meaning of similarity, which tends to depend on the underlying data and task. Moreover, conventional distance functions limit the space of similarity measures to be symmetric and do not directly allow comparing objects from different spaces. We propose using quantum networks (GQSim) for learning task-dependent (a)symmetric similarity between data that need not have the same dimensionality. We analyze the properties of such similarity function analytically (for a simple case) and numerically (for a complex case) and showthat these similarity measures can extract salient features of the data. We also demonstrate that the similarity measure derived using this technique is $(\epsilon,\gamma,\tau)$-good, resulting in theoretically guaranteed performance. Finally, we conclude by applying this technique for three relevant applications - Classification, Graph Completion, Generative modeling.
翻译:物体之间的相似性在范围很广的领域是相当的。虽然使用现成的距离函数可以测量相似性,但是它们可能无法捕捉相似性的内在含义,而相似性往往取决于基本数据和任务。此外,常规的距离功能限制了相似性测量空间的对称空间,不能直接允许比较不同空间的物体。我们提议使用量子网络(GQSim)学习依赖任务的数据(a) 不需要相同维度的数据之间的对称相似性。我们从分析角度(简单案例)和数字角度(复杂案例)分析这种相似性函数的特性,并表明这些相似性测量可以提取数据中的显著特征。我们还表明,使用这种技术得出的类似性测量值是$(epsilon,\gamma,\tau)-h-hy,从而在理论上保证性能。最后,我们通过将这种技术应用于三个相关的应用——分类、图表的完成、精细化模型来得出结论。