In this paper, we investigate the so-called ODP-problem that has been formulated by Caragiannis and Micha [10]. Here, we are in a setting with two election alternatives out of which one is assumed to be correct. In ODP, the goal is to organise the delegations in the social network in order to maximize the probability that the correct alternative, referred to as ground truth, is elected. While the problem is known to be computationally hard, we strengthen existing hardness results by providing a novel strong approximation hardness result: For any positive constant $C$, we prove that, unless $P=NP$, there is no polynomial-time algorithm for ODP that achieves an approximation guarantee of $\alpha \ge (\ln n)^{-C}$, where $n$ is the number of voters. The reduction designed for this result uses poorly connected social networks in which some voters suffer from misinformation. Interestingly, under some hypothesis on either the accuracies of voters or the connectivity of the network, we obtain a polynomial-time $1/2$-approximation algorithm. This observation proves formally that the connectivity of the social network is a key feature for the efficiency of the liquid democracy paradigm. Lastly, we run extensive simulations and observe that simple algorithms (working either in a centralized or decentralized way) outperform direct democracy on a large class of instances. Overall, our contributions yield new insights on the question in which situations liquid democracy can be beneficial.


翻译:在本文中,我们调查了Caragiannis和Micha [10] 所制定的所谓ODP问题。在这里,我们处于一种有两种选举替代方案,其中一种被认为是正确的。在ODP中,目标是组织代表团在社会网络中,以便最大限度地增加选择正确的替代方案(称为地面真相)的可能性。虽然这个问题在计算上是十分困难的,但我们通过提供一种新的强烈近似硬性结果来加强现有的硬性结果:对于任何恒定的C美元,我们证明,除非美元=NP美元,否则,ODP没有实现美元/alpha\ge(n)\%-C}近似正值($ n)的混合时段算法,而美元是选民人数的近似保证。为这一结果而设计的减少使用连接不畅通的社会网络,使一些选民遭受错误信息。有趣的是,根据某种假设,对于任何恒定不变的美元或网络的连通性,我们都能获得一个多时一美元/正数的递增度算法,除非ODP的混合时间算法,对于ODP情况没有一种混合的混合时间算法。这种常值的民主直观,这种观察方式在民主的轨道上,一个简单的中央化模式中,一个关键的连通制式的精确的连接方式,最后,就是,一个简单的社会网络在社会网络中,一个主要的连通制式的精度,一个核心的精准。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
计算机视觉领域顶会CVPR 2018 接受论文列表
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
49+阅读 · 2021年1月1日
专知会员服务
110+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
计算机视觉领域顶会CVPR 2018 接受论文列表
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员