Population attributable risk (PAR) is used in epidemiology to predict the impact of removing a risk factor from the population. Until recently, no standard approach for calculating confidence intervals or the variance for PAR was available in the literature. Pirikahu et al. (2016) outlined a fully Bayesian approach to provide credible intervals for the PAR from a cross-sectional study, where the data was presented in the form of a 2 x 2 table. However, extensions to cater for other frequently used study designs were not provided. In this paper we provide methodology to calculate credible intervals for the PAR for case-control and cohort studies. Additionally, we extend the cross-sectional example to allow for the incorporation of uncertainty that arises when an imperfect diagnostic test is used. In all these situations the model becomes over-parameterised, or non-identifiable, which can result in standard "off-the-shelf" Markov chain Monte Carlo updaters taking a long time to converge or even failing altogether. We adapt an importance sampling methodology to overcome this problem, and propose some novel MCMC samplers that take into consideration the shape of the posterior ridge to aid in the convergence of the Markov chain.
翻译:Pirikahu等人(2016年)概述了一种完全的巴伊西亚办法,从跨部门研究中为巴伊西亚人提供可信的间隔,在跨部门研究中,数据以2x2表的形式出现。然而,没有为其他经常使用的研究设计提供扩展,本文提供了计算PAR案件控制和组群研究的可靠间隔的方法。此外,我们扩展了跨部门例子,以纳入在使用不完善的诊断测试时产生的不确定性。在所有这些情况下,模型变得过分或无法识别,可能导致标准“脱产”的Markov连锁Monte Carlo更新器,长时间以达到或甚至完全失效。我们调整了一个重要的取样方法,以克服这一问题,并提议了一些考虑到海脊形状的新型MCMC取样器,以便在马科诺夫链的趋同过程中提供帮助。