The standard way to estimate the parameters $\Theta_\text{SEIR}$ (e.g., the transmission rate $\beta$) of an SEIR model is to use grid search, where simulations are performed on each set of parameters, and the parameter set leading to the least $L_2$ distance between predicted number of infections and observed infections is selected. This brute-force strategy is not only time consuming, as simulations are slow when the population is large, but also inaccurate, since it is impossible to enumerate all parameter combinations. To address these issues, in this paper, we propose to transform the non-differentiable problem of finding optimal $\Theta_\text{SEIR}$ to a differentiable one, where we first train a recurrent net to fit a small number of simulation data. Next, based on this recurrent net that is able to generalize SEIR simulations, we are able to transform the objective to a differentiable one with respect to $\Theta_\text{SEIR}$, and straightforwardly obtain its optimal value. The proposed strategy is both time efficient as it only relies on a small number of SEIR simulations, and accurate as we are able to find the optimal $\Theta_\text{SEIR}$ based on the differentiable objective. On two COVID-19 datasets, we observe that the proposed strategy leads to significantly better parameter estimations with a smaller number of simulations.


翻译:用于估算SEIR模型参数$$Theta>text{SEIR}$(例如,传输率$美元)的标准方法,是使用网格搜索,对每组参数进行模拟,并选择导致预计感染人数和观察到感染人数之间距离最小为L_2美元的参数组。这种布鲁特力战略不仅耗时,因为当人口众多时,模拟速度缓慢,而且不准确,因为不可能列出所有参数组合。为了解决这些问题,我们建议将寻找最佳值$\Theta{text{SEIR}的无差别问题转换为不同问题,即对每组参数进行模拟,对每组参数进行模拟,并选择导致预测感染人数和观察到的距离最小为L2美元。接下来,根据能够概括SEI模拟的经常网,我们可以将目标转换为不同的目标,在$\theta{text{{SEI} 上,并直接获得最佳值。拟议的战略既要更小的时间效率,因为它只依靠最精确的SEIR值,我们只能依靠一个小的精度,也只能依靠一个最精确的数字。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
23+阅读 · 2020年1月28日
相关资讯
已删除
创业邦杂志
5+阅读 · 2019年3月27日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员