Inferring the input parameters of simulators from observations is a crucial challenge with applications from epidemiology to molecular dynamics. Here we show a simple approach in the regime of sparse data and approximately correct models, which is common when trying to use an existing model to infer latent variables with observed data. This approach is based on the principle of maximum entropy and provably makes the smallest change in the latent joint distribution to accommodate new data. This simple method requires no likelihood or simulator derivatives and its fit is insensitive to prior strength, removing the need to balance observed data fit with prior belief. We demonstrate this MaxEnt approach and compare with other likelihood-free inference methods across three systems; a linear simulator with Gaussian noise, a point particle moving in a gravitational field, and finally a compartmental mode of epidemic spread. We demonstrate that our method compares favorably, and in some cases exceeds the performance of other methods.
翻译:从观测中推断模拟器的输入参数是一项关键的挑战,从流行病学到分子动态的应用都是如此。 我们在这里展示了一种简单的方法,即数据稀少和模型大致正确,在试图使用现有模型用观察到的数据来推断潜在变量时,这是常见的。这种方法基于最大回旋率原则,可以使潜在联合分布的变化最小,以适应新的数据。这一简单方法不需要任何可能性或模拟衍生物,其适合与先前的强度不相适应,从而消除了平衡观察到的与先前的信念相适应的数据的需要。我们演示了这一MaxEnt方法,并与其他三个系统无可能性的推断方法进行了比较;一个直线模拟器,带有高斯噪音,一个在引力场移动的点粒子,最后是一种流行病扩散的分包模式。我们证明,我们的方法比较优异,在某些情况下超过了其他方法的性能。