Current Open-Domain Question Answering (ODQA) model paradigm often contains a retrieving module and a reading module. Given an input question, the reading module predicts the answer from the relevant passages which are retrieved by the retriever. The recent proposed Fusion-in-Decoder (FiD), which is built on top of the pretrained generative model T5, achieves the state-of-the-art performance in the reading module. Although being effective, it remains constrained by inefficient attention on all retrieved passages which contain a lot of noise. In this work, we propose a novel method KG-FiD, which filters noisy passages by leveraging the structural relationship among the retrieved passages with a knowledge graph. We initiate the passage node embedding from the FiD encoder and then use graph neural network (GNN) to update the representation for reranking. To improve the efficiency, we build the GNN on top of the intermediate layer output of the FiD encoder and only pass a few top reranked passages into the higher layers of encoder and decoder for answer generation. We also apply the proposed GNN based reranking method to enhance the passage retrieval results in the retrieving module. Extensive experiments on common ODQA benchmark datasets (Natural Question and TriviaQA) demonstrate that KG-FiD can improve vanilla FiD by up to 1.5% on answer exact match score and achieve comparable performance with FiD with only 40% of computation cost.


翻译:当前开放式问答模式( ODQA ) 模式通常包含一个检索模块和读取模块。 在输入问题下, 读取模块预言来自检索器检索的相关段落的答案。 最新提议的 Fusion- in-Decoder (FID), 建在预先训练的基因化模型 T5 上方, 实现了阅读模块中的最新性能。 尽管它有效, 仍然受到所有回收通道的关注效率低下的限制, 其中含有大量噪音 。 在这项工作中, 我们提出了一个新型的 KG- FiD 方法, 它将利用检索到的段落之间的结构关系, 用一个知识图形来过滤噪音的段落。 我们从 FiD 编码中启动连接的通道节点, 然后使用图形内线网络来更新重新排序。 提高效率, 我们把 GNNN 建在 FiD 编码中层输出的顶端, 并且只通过几个最高级的解析段, 将40级的评分过滤器过滤器过滤到解析器中。 我们还在解调的 GNNO 模块上, 升级到解调的普通数据。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员