Event camera is a novel bio-inspired vision sensor that outputs event stream. In this paper, we propose a novel data fusion algorithm called EAS to fuse conventional intensity images with the event stream. The fusion result is applied to some ego-motion estimation frameworks, and is evaluated on a public dataset acquired in dim scenes. In our 3-DoF rotation estimation framework, EAS achieves the highest estimation accuracy among intensity images and representations of events including event slice, TS and SITS. Compared with original images, EAS reduces the average APE by 69%, benefiting from the inclusion of more features for tracking. The result shows that our algorithm effectively leverages the high dynamic range of event cameras to improve the performance of the ego-motion estimation framework based on optical flow tracking in difficult illumination conditions.
翻译:事件相机是一种新颖的生物激励视觉传感器, 它输出事件流。 在本文中, 我们建议使用一种叫做 EAS 的新数据聚合算法, 将常规强度图像与事件流结合。 聚合结果应用到某些自我感动估计框架, 并且根据在暗色场景中获取的公共数据集进行评估 。 在我们的 3 - DoF 轮用估计框架中, EAS 在事件切片、 TS 和 SITS 等事件的强度图像和描述中达到最高估计精确度。 与原始图像相比, EAS 将平均APE 减少69%, 受益于包含更多跟踪功能。 结果表明, 我们的算法有效地利用了高动态事件摄像头的范围, 来改善基于在困难的照明条件下光流跟踪的自我感动估计框架的性能。