Visual Inertial Odometry (VIO) is of great interest due the ubiquity of devices equipped with both a monocular camera and Inertial Measurement Unit (IMU). Methods based on the extended Kalman Filter remain popular in VIO due to their low memory requirements, CPU usage, and processing time when compared to optimisation-based methods. In this paper, we analyse the VIO problem from a geometric perspective and propose a novel formulation on a smooth quotient manifold where the equivalence relationship is the well-known invariance of VIO to choice of reference frame. We propose a novel Lie group that acts transitively on this manifold and is compatible with the visual measurements. This structure allows for the application of Equivariant Filter (EqF) design leading to a novel filter for the VIO problem. Combined with a very simple vision processing front-end, the proposed filter demonstrates state-of-the-art performance on the EuRoC dataset compared to other EKF-based VIO algorithms.
翻译:由于装有单镜照相机和惯性测量装置的装置非常普遍,视觉惯性测量仪(VIO)引起了极大的兴趣。基于扩展的Kalman过滤器的方法在VIO中仍然很受欢迎,因为它们的内存要求低,使用CPU和处理时间与基于优化的方法相比较。在本文件中,我们从几何角度分析VIO问题,并提出一个关于平滑的商数方块的新配方,其中等值关系是VIO在选择参照框架时的众所周知的偏差。我们建议成立一个新型的Li小组,在这个多管上进行过渡,并与视觉测量兼容。这一结构允许应用等离子过滤器的设计,从而导致对VIO问题进行新的过滤。结合一个非常简单的视觉处理前端,拟议的过滤器展示了EuRoC数据集与其他基于EKF的VO算法相比的状态。