Introducing object-level semantic information into simultaneous localization and mapping (SLAM) system is critical. It not only improves the performance but also enables tasks specified in terms of meaningful objects. This work presents OrcVIO, for visual-inertial odometry tightly coupled with tracking and optimization over structured object models. OrcVIO differentiates through semantic feature and bounding-box reprojection errors to perform batch optimization over the pose and shape of objects. The estimated object states aid in real-time incremental optimization over the IMU-camera states. The ability of OrcVIO for accurate trajectory estimation and large-scale object-level mapping is evaluated using real data.
翻译:将对象级语义信息引入同步本地化和绘图系统( SLAM) 至关重要。 它不仅能改善性能,还能完成有意义的对象规定的任务。 这项工作展示了 OrcVIO, 用于视觉- 内皮odology, 与结构化对象模型的跟踪和优化紧密结合。 OrcVIO 通过语义特征和捆绑框的重新预测错误进行区分, 以对物体的形状和形状进行批量优化。 估计对象表示在IMU- camera 州进行实时增量优化。 OrcVIO 准确的轨迹估计和大型物体水平绘图的能力, 使用真实数据进行评估 。