Introducing object-level semantic information into simultaneous localization and mapping (SLAM) system is critical. It not only improves the performance but also enables tasks specified in terms of meaningful objects. This work presents OrcVIO, for visual-inertial odometry tightly coupled with tracking and optimization over structured object models. OrcVIO differentiates through semantic feature and bounding-box reprojection errors to perform batch optimization over the pose and shape of objects. The estimated object states aid in real-time incremental optimization over the IMU-camera states. The ability of OrcVIO for accurate trajectory estimation and large-scale object-level mapping is evaluated using real data.


翻译:将对象级语义信息引入同步本地化和绘图系统( SLAM) 至关重要。 它不仅能改善性能,还能完成有意义的对象规定的任务。 这项工作展示了 OrcVIO, 用于视觉- 内皮odology, 与结构化对象模型的跟踪和优化紧密结合。 OrcVIO 通过语义特征和捆绑框的重新预测错误进行区分, 以对物体的形状和形状进行批量优化。 估计对象表示在IMU- camera 州进行实时增量优化。 OrcVIO 准确的轨迹估计和大型物体水平绘图的能力, 使用真实数据进行评估 。

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2019年12月13日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
超全汇总 | ORB-SLAM2 / ORB-SLAM3 相关改进代码!
计算机视觉life
35+阅读 · 2020年11月22日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
计算机视觉领域顶会CVPR 2018 接受论文列表
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
超全汇总 | ORB-SLAM2 / ORB-SLAM3 相关改进代码!
计算机视觉life
35+阅读 · 2020年11月22日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
计算机视觉领域顶会CVPR 2018 接受论文列表
Top
微信扫码咨询专知VIP会员