Power priors are used for incorporating historical data in Bayesian analyses by taking the likelihood of the historical data raised to the power $\alpha$ as the prior distribution for the model parameters. The power parameter $\alpha$ is typically unknown and assigned a prior distribution, most commonly a beta distribution. Here, we give a novel theoretical result on the resulting marginal posterior distribution of $\alpha$ in case of the the normal and binomial model. Counterintuitively, when the current data perfectly mirror the historical data and the sample sizes from both data sets become arbitrarily large, the marginal posterior of $\alpha$ does not converge to a point mass at $\alpha = 1$ but approaches a distribution that hardly differs from the prior. The result implies that a complete pooling of historical and current data is impossible if a power prior with beta prior for $\alpha$ is used.
翻译:在Bayesian 分析中,将历史数据作为模型参数的先前分布范围,作为向Power $\ alpha$提供历史数据的可能性,从而将历史数据纳入Bayesian 分析中。 电参数$\ alpha$通常是未知的,并分配了先前的分布,最常见的是 beta 分布。 这里,我们给出了一个新颖的理论结果,说明在正常模型和二元模型中,由此形成的美元边缘后方分布。 反直观地说,当当前数据完美地反映了历史数据,两个数据集的样本大小变得任意大时,$\ alpha$的边缘后方不会聚集到 $\ alpha$ = 1 的点质量上,但接近于与先前几乎没有区别的分布。 其结果意味着,如果使用先前使用美元为Beta的电源,则不可能完全汇集历史和当前数据。