Full waveform inversion (FWI) is widely used in geophysics to reconstruct high-resolution velocity maps from seismic data. The recent success of data-driven FWI methods results in a rapidly increasing demand for open datasets to serve the geophysics community. We present OpenFWI, a collection of large-scale multi-structural benchmark datasets, to facilitate diversified, rigorous, and reproducible research on FWI. In particular, OpenFWI consists of 12 datasets (2.1TB in total) synthesized from multiple sources. It encompasses diverse domains in geophysics (interface, fault, CO2 reservoir, etc.), covers different geological subsurface structures (flat, curve, etc.), and contains various amounts of data samples (2K - 67K). It also includes a dataset for 3D FWI. Moreover, we use OpenFWI to perform benchmarking over four deep learning methods, covering both supervised and unsupervised learning regimes. In addition to evaluations on a single dataset, OpenFWI enables the study of generalization across datasets. Our study uncovers that the deep learning methods generalize poorly across domains, and the degradation connects to the complexity of subsurface structures. We hope OpenFWI facilitates diversified, rigorous, and reproducible research in the geophysics and machine learning community. All datasets and related information can be accessed through our website at https://openfwi-lanl.github.io/
翻译:完全波形转换(FWI)在地球物理中广泛使用,以重建地震数据中高分辨率高速地图。最近数据驱动的FWI方法的成功导致对开放数据集的需求迅速增加,以便为地球物理学界服务。我们介绍了OpenFWI,这是一套大型多结构基准数据集的集集,便于对FWI进行多样化、严格和可复制的研究。特别是,OpenFWI由12个数据集(总共2.1TB)组成,从多个来源合成。它包含地球物理(内层、断层、CO2储油层等)的不同领域,涵盖不同的地质次表层结构(平面、曲线等),并包含各种数据样本(2K-67K)。此外,我们利用OpenFWI对四种深层次学习方法进行基准,既包括监督的学习系统,也包括未经监督的学习系统系统。OpenFWIWI可以对数据集进行一般化的研究。我们的研究发现,OpenFILIF的深度学习方法将所有复杂地表层结构与整个领域进行紧密的退化。