项目名称: p+深层扩散结构提高p-in-n硅微条探测器抗辐照性能的机理研究

项目编号: No.11505260

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 王秀华

作者单位: 中国科学院近代物理研究所

项目金额: 23万元

中文摘要: 硅微条探测器具有能量、位置分辨高,体积轻巧等优点,国际上各高能物理实验室的大型实验谱仪相继采用了硅微条探测器作为顶点探测器和径迹探测器。中国科学院近代物理研究所的HIRFL-CSR外靶终端实验谱仪也需要大量使用硅微条探测器。近物所微电子工艺实验室成功研制了p-in-n硅微条探测器,但该类探测器对辐照损伤很敏感。本项目针对目前现有探测器抗辐照性能差的特点,在不改变原有硅衬底的基础上,拟采用p+ 杂质深层扩散在探测器pn结附近产生具有梯度分布的有效空间电荷的方法,研制P+深层扩散结构硅微条探测器,使其在辐照损伤后,在较低的反向偏压下,能实现电荷倍增效应,提高探测器信号幅度,增强探测器的抗辐照性能。我们通过工艺模拟和辐照损伤实验,获得结构及工艺参数与抗辐照性能之间的变化规律,从而为进一步提高该类探测器性能提供数据支持。该研究可为兰州实验谱仪提供一种抗辐照性能好、寿命长的p-in-n硅微条探测器。

中文关键词: 硅微条探测器;p+深层扩散结构;电荷倍增;抗辐照性能

英文摘要: Silicon micro-strip detectors are employed for vertex detectors and track detectors by the international physical laboratories because of its high resolution both in energy and space, wide linearity range, fast response and small volume. They are also largely used in the external target facility in HIRFL-CSR in IMPCAS. The Microelectronics Technology Lab in IMPCAS has developed p-in-n silicon micro-strip detectors, but they are very sensitive to structural damage. Because of their poor resistance to radiation, we expect to develop deep p+ diffusion structure micro-strip detectors using deep p+ diffusion technology to form gradient of the effective space charge distributing near the p-n junction in the detectors, which could make the charge multiplication take place in the irradiated detectors in low bias voltage. Therefor the signal amplitude and also the radiation hardness would be improved. The performance between structural and technical parameters and radiation properties would be obtained by the process simulations and irradiation experiments, which could provide the efficient data support for improving the detection performance of this kind. Our study could provide p-in-n silicon micro-strip detectors for Lanzhou Spectrometer with better radiation hardness and longer lifetime.

英文关键词: silicon micro-strip detector;deep p+ diffusion structrue; charge multiplication;radiation hardness

成为VIP会员查看完整内容
0

相关内容

CVPR2022 | Sparse Transformer刷新点云目标检测的SOTA
专知会员服务
23+阅读 · 2022年3月9日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
15+阅读 · 2021年6月6日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
TrOCR:基于Transformer的新一代光学字符识别
微软研究院AI头条
0+阅读 · 2021年10月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员