Apple scab is a fungal disease caused by Venturia inaequalis. Disease is of particular concern for growers, as it causes significant damage to fruit and leaves, leading to loss of fruit and yield. This article examines the ability of deep learning and hyperspectral imaging to accurately identify an apple symptom infection in apple trees. In total, 168 image scenes were collected using conventional RGB and Visible to Near-infrared (VIS-NIR) spectral imaging (8 channels) in infected orchards. Spectral data were preprocessed with an Artificial Neural Network (ANN) trained in segmentation to detect scab pixels based on spectral information. Linear Discriminant Analysis (LDA) was used to find the most discriminating channels in spectral data based on the healthy leaf and scab infested leaf spectra. Five combinations of false-colour images were created from the spectral data and the segmentation net results. The images were trained and evaluated with a modified version of the YOLOv5 network. Despite the promising results of deep learning using RGB images (P=0.8, mAP@50=0.73), the detection of apple scab in apple trees using multispectral imaging proved to be a difficult task. The high-light environment of the open field made it difficult to collect a balanced spectrum from the multispectral camera, since the infrared channel and the visible channels needed to be constantly balanced so that they did not overexpose in the images.


翻译:苹果沙子是一种由Venturia unacreenis 引起的真菌病。 疾病对于种植者来说尤其令人特别关切,因为它对水果和叶子造成重大损害,导致水果和产量损失。 文章审视了深层学习和超光谱成像的能力,以准确地辨别苹果树中的苹果症状感染。 总共利用常规RGB收集了168个图像场景,并可见近红树林中的光谱成像( VIS- NIR) (8个频道) 。 光谱数据由受感染的果园中( VIS- NIR) 的光谱成像( 8个频道 ) 。 光谱数据由人工神经网络( ANN) 进行预先处理, 以光谱信息为基础进行分解, 检测沙子像像像。 线和高光谱分析( LDA) 利用健康的叶片和深光谱数据采集的光谱数据, 将五种假色图像组合从光谱数据和分解网结果生成。 通过YOLOV5 网络的修改版对图像进行了训练和评价。 尽管通过高光谱的光谱分析取得了很有结果, 5 。 以高光谱的光路的光谱中, 已经用RGB50 的光谱图的光谱系的光谱环境 被证实了 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
0+阅读 · 2023年4月9日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
17+阅读 · 2020年11月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员