The rapid advancement in data-driven research has increased the demand for effective graph data analysis. However, real-world data often exhibits class imbalance, leading to poor performance of machine learning models. To overcome this challenge, class-imbalanced learning on graphs (CILG) has emerged as a promising solution that combines the strengths of graph representation learning and class-imbalanced learning. In recent years, significant progress has been made in CILG. Anticipating that such a trend will continue, this survey aims to offer a comprehensive understanding of the current state-of-the-art in CILG and provide insights for future research directions. Concerning the former, we introduce the first taxonomy of existing work and its connection to existing imbalanced learning literature. Concerning the latter, we critically analyze recent work in CILG and discuss urgent lines of inquiry within the topic. Moreover, we provide a continuously maintained reading list of papers and code at https://github.com/yihongma/CILG-Papers.


翻译:图中不平衡学习:综述 随着基于数据驱动的研究的快速发展,对有效的图数据分析的需求越来越多。然而,真实世界的数据经常呈现出类别不平衡,导致机器学习模型的性能不佳。为了克服这个挑战,图中不平衡学习(CILG)已经成为一种有前途的解决方案,结合了图表示学习和类不平衡学习的优势。近年来,在CILG方面已经取得了显著的进展。本综述旨在提供对当前CILG领域最新研究现状的全面理解,并为未来的研究方向提供见解。关于前者,我们引入了首个现有工作的分类法及其与现有不平衡学习文献的联系。关于后者,我们对近期CILG的研究进行了批判性分析,并讨论了该主题内急需的研究方向。此外,我们在 https://github.com/yihongma/CILG-Papers 提供定期更新的论文阅读列表和代码。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
28+阅读 · 2023年2月10日
Arxiv
67+阅读 · 2022年4月13日
Arxiv
13+阅读 · 2021年10月9日
A Survey on Data Augmentation for Text Classification
Arxiv
57+阅读 · 2021年5月3日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
28+阅读 · 2023年2月10日
Arxiv
67+阅读 · 2022年4月13日
Arxiv
13+阅读 · 2021年10月9日
A Survey on Data Augmentation for Text Classification
Arxiv
57+阅读 · 2021年5月3日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
53+阅读 · 2018年12月11日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员