Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) is a modern imaging technique used in material research to study nanoscale materials. Reconstruction of the parameters of an imaged object imposes an ill-posed inverse problem that is further complicated when only an in-plane GISAXS signal is available. Traditionally used inference algorithms such as Approximate Bayesian Computation (ABC) rely on computationally expensive scattering simulation software, rendering analysis highly time-consuming. We propose a simulation-based framework that combines variational auto-encoders and normalizing flows to estimate the posterior distribution of object parameters given its GISAXS data. We apply the inference pipeline to experimental data and demonstrate that our method reduces the inference cost by orders of magnitude while producing consistent results with ABC.
翻译:在材料研究中用于研究纳米材料的现代成像技术(GISAXS)是用于研究纳米材料的材料研究的现代成像技术,对图像物体参数的重建带来了一个错误的反向问题,当只有飞机上的GISAXS信号可用时,这个问题就更加复杂了。传统上使用的诸如Apbear Bayesian Computation(ABC)等推理算法依赖计算上昂贵的散射模拟软件,从而进行分析非常费时。我们提出了一个模拟框架,将变式自动编码器和正常流结合起来,根据GISAXS的数据来估计物体参数的外表分布。我们将推断管道应用于实验数据,并证明我们的方法在产生与ABC一致的结果的同时,会减少数量级的推论成本。