Conversational recommenders are emerging as a powerful tool to personalize a user's recommendation experience. Through a back-and-forth dialogue, users can quickly hone in on just the right items. Many approaches to conversational recommendation, however, only partially explore the user preference space and make limiting assumptions about how user feedback can be best incorporated, resulting in long dialogues and poor recommendation performance. In this paper, we propose a novel conversational recommendation framework with two unique features: (i) a greedy NDCG attribute selector, to enhance user personalization in the interactive preference elicitation process by prioritizing attributes that most effectively represent the actual preference space of the user; and (ii) a user representation refiner, to effectively fuse together the user preferences collected from the interactive elicitation process to obtain a more personalized understanding of the user. Through extensive experiments on four frequently used datasets, we find the proposed framework not only outperforms all the state-of-the-art conversational recommenders (in terms of both recommendation performance and conversation efficiency), but also provides a more personalized experience for the user under the proposed multi-groundtruth multi-round conversational recommendation setting.
翻译:沟通建议者正在成为使用户推荐经验个性化的有力工具。 通过前后对话,用户可以快速对正确的项目进行精细处理。许多对话建议方法,但只部分探索用户偏好空间,对用户反馈的最佳整合进行限制假设,导致长时间对话,建议性能差。在本文中,我们提出了一个具有两个独特特点的新颖对话建议框架:(一) 贪婪的NDCG属性选择器,通过优先排序最能有效代表用户实际偏好空间的属性,加强互动偏好过程中的用户个性化;以及(二) 用户代表改进器,有效地将从互动引导进程中收集的用户偏好组合起来,以获得对用户更个性化的理解。通过对四种经常使用的数据集的广泛实验,我们发现拟议框架不仅超越了所有最先进的对话建议者(建议性能和对话效率两方面),而且还在拟议的多背景多方对话建议下为用户提供更个性化的经验。